

Welcome to reportsrender’s documentation!

Contents:

	Generate reproducible reports from Rmarkdown or jupyter notebooks

	Getting started

	Usage from command line

	Installation
	Conda (recommended):

	Manual installation:

	Features
	Execution engines

	Supported notebook formats

	Hiding cell inputs/outputs

	Parametrized notebooks

	Sharing reports

	Combine notebooks into a pipeline

	Usage as Python library
	reportsrender.render_rmd

	reportsrender.render_papermill

	reportsrender.run_pandoc

	reportsrender.build_index

Generate reproducible reports from Rmarkdown or jupyter notebooks

[image: Build Status] [https://travis-ci.com/grst/reportsrender] [image: Documentation Status] [https://reportsrender.readthedocs.io/en/latest/?badge=latest] [image: The uncompromising python formatter] [https://github.com/psf/black]

Reportsrender allows to create reproducible, consistently looking HTML reports from
both jupyter notebooks and Rmarkdown files. It makes use of papermill [https://github.com/nteract/papermill]
and Rmarkdown [https://bookdown.org/yihui/rmarkdown/] to execute notebooks and uses
Pandoc [https://pandoc.org/] to convert them to HTML.

	Features:
	
	two execution engines: papermill and Rmarkdown.

	support any format supported by jupytext [https://github.com/mwouts/jupytext].

	create self-contained HTML that can be shared easily.

	hide inputs and/or outputs of cells.

	parametrized reports

See the documentation [https://reportsrender.readthedocs.io/] for more details!

Getting started

	Execute an rmarkdown document to HTML using the Rmarkdown engine

reportsrender --engine=rmd my_notebook.Rmd report.html

	Execute a parametrized jupyter notebook with papermill

reportsrender --engine=papermill jupyter_notebook.ipynb report.html --params="data_file=table.tsv"

Usage from command line

reportsrender

Execute and render a jupyter/Rmarkdown notebook.
The `index` subcommand generates an index html
or markdown file that links to html documents.

Usage:
 reportsrender <notebook> <out_file> [--cpus=<cpus>] [--params=<params>] [--engine=<engine>]
 reportsrender index [--index=<index_file>] [--title=<title>] [--] <html_files>...
 reportsrender --help

Arguments and options:
 <notebook> Input notebook to be executed. Can be any format supported by jupytext.
 <out_file> Output HTML file.
 -h --help Show this screen.
 --cpus=<cpus> Number of CPUs to use for Numba/Numpy/OpenBLAS/MKL [default: 1]
 --params=<params> space-separated list of key-value pairs that will be passed
 to papermill/Rmarkdown.
 E.g. "input_file=dir/foo.txt output_file=dir2/bar.html"
 --engine=<engine> Engine to execute the notebook. [default: auto]

Arguments and options of the `index` subcommand:
 <html_files> List of HTML files that will be included in the index. The tool
 will generate relative links from the index file to these files.
 --index=<index_file> Path to the index file that will be generated. Will be
 overwritten if exists. Will auto-detect markdown (.md) and
 HTML (.html) format based on the extension. [default: index.html]
 --title=<title> Headline of the index. [default: Index]

Possible engines are:
 auto Use `rmd` engine for `*.Rmd` files, papermill otherwise.
 rmd Use `rmarkdown` to execute the notebook. Supports R and
 python (through reticulate)
 papermill Use `papermill` to execute the notebook. Works for every
 kernel available in the jupyter installation.

Installation

Conda (recommended):

As this reportsrender dependes on both R and Python packages, I recommend
to install it through conda [https://docs.conda.io/en/latest/miniconda.html].
The following command will install reportsrender and all its dependencies in the
current conda environment:

conda install -c conda-forge grst::reportsrender

If you prefer not to use conda, you can follow the approach below:

Manual installation:

Get dependencies:

	Python

	pandoc [https://pandoc.org/]

For the Rmarkdown render engine additionally
(there is no need to install them if you are not going
to use the Rmarkdown rendeirng engine):

	R and the following packages:

rmarkdown
reticulate

then,

Install from pip:

pip install reportsrender

or,

Install from github:

pip install flit
flit installfrom github:grst/reportsrender

Features

Execution engines

Reportsrender comes with two execution engines:

	Rmarkdown. This engine makes use of the Rmarkdown package [https://rmarkdown.rstudio.com/]
implemented in R. Essentially, this engine calls
Rscript -e “rmarkdown::render()”. It supports
Rmarkdown notebooks (Rmd format) and python notebooks
through reticulate [https://rstudio.github.io/reticulate/].

	Papermill. This engine combines papermill [https://github.com/nteract/papermill]
and nbconvert [https://nbconvert.readthedocs.io/en/latest/] to parametrize and
execute notebooks. It supports any programming language for which a jupyter
kernel is installed.

Supported notebook formats

Reportsrender uses jupytext [https://github.com/mwouts/jupytext]
to convert between input formats.
Here is the full list of supported formats [https://jupytext.readthedocs.io/en/latest/formats.html].

So no matter if you want to run an Rmd file with papermill, an ipynb with Rmarkdown or a
Hydrogen percent script [https://atom.io/packages/hydrogen], reportsrender
has got you covered.

Hiding cell inputs/outputs

You can hide inputs and or outputs of individual cells:

Papermill engine:

Within a jupyter notebook:

	edit cell metadata

	add one of the following tags: hide_input, hide_output, remove_cell

{
 "tags": [
 "remove_cell"
]
}

Rmarkdown engine:

	all native input control options
(e.g. results=’hide’, include=FALSE, echo=FALSE) are supported. See the
Rmarkdown documentation [https://bookdown.org/yihui/rmarkdown/r-code.html] for more details.

Jupytext [https://github.com/mwouts/jupytext] automatically converts the
tags to Rmarkdown options for all supported formats.

Parametrized notebooks

Papermill engine:

	See the Papermill documentation [https://papermill.readthedocs.io/en/latest/usage-parameterize.html]

Example:

	Add the tag parameters to the metadata of a cell in a jupyter notebook.

	Declare default parameters in that cell:

input_file = '/path/to/default_file.csv'

	Use the variable as any other:

import pandas as pd
pd.read_csv(input_file)

Rmarkdown engine:

	See the documentation [https://bookdown.org/yihui/rmarkdown/params-declare.html].

Example:

	Declare the parameter in the yaml frontmatter.

	You can set default parameters that will be used when
the notebook is executed interactively in Rstudio. They will be overwritten
when running through reportsrender.

title: My Document
output: html_document
params:

 input_file: '/path/to/default_file.csv'

	Access the parameters from the code:

read_csv(params$input_file)

Be compatible with both engines:

Yes it’s possible! You can execute the same notebook with both engines.
Adding parameters is a bit more cumbersome though.

Example (Python notebook stored as .Rmd file using jupytext):

title: My Document
output: html_document
params:
 input_file: '/path/to/default_file.csv'

```{python tags=c("parameters")}
try:
    # try to get param from Rmarkdown using reticulate.
    input_file = r.params["input_file"]
except:
    # won't work if running papermill. Re-declare default parameters.
    input_file = "/path/to/default_file.csv"
```


Sharing reports

Reportsrender create self-contained HTML files
that can be easily shared, e.g. via email.

I do, however, recommend using github pages [https://pages.github.com/]
to upload and share your reports. A central website serves
as a single point of truth and elimiates the problem of
different versions of your reports being emailed around.

You can make use of reportsrender index to automatically generate
an index page listing multiple reports:

Say, you generated several reports and already put them into your
github-pages directory:

gh-pages
├── 01_preprocess_data.html
├── 02_analyze_data.html
└── 03_visualize_data.htmlp

Then you can generate an index file listing and linking to your reports by running

reportsrender index --index gh-pages/index.md gh-pages/*.html

For more details see Usage from command line and reportsrender.build_index()

Password protection

Not all analyses can be shared publicly. Unfortunately,
github-pages does not support password protection.

There is a workaround [https://stackoverflow.com/questions/27065192/how-do-i-protect-a-directory-within-github-pages],
though:

As github-pages doesn’t list directories, you can simply create
a long, cryptic subdirectory, e.g. t8rry6poj7ua6eujqpb57
and put your reports within. Only people with whom
you share the exact link will be able to access the site.

Combine notebooks into a pipeline

Reportsrender is built with pipelines in mind.
You can easily combine individual analysis steps into a fully reproducible
pipeline using workflow engines such as Nextflow [https://www.nextflow.io/]
or Snakemake [https://snakemake.readthedocs.io/en/stable/].

A full example how such a pipeline might look like is available in
a dedicated GitHub repository: universal_analysis_pipeline [https://github.com/grst/universal_analysis_pipeline/].
It’s based on Nextflow, but could easily be adapted to other pipelining engines.

Usage as Python library

Reportsrender provides a public API that can be used to execute and convert notebooks to HTML:

Execute and render notebooks as HTML reports.

	render_rmd(input_file, output_file[, params])

	Wrapper function to render an Rmarkdown document with the R rmarkdown package and convert it to HTML using pandoc and a custom template.

	render_papermill(input_file, output_file[, …])

	Wrapper function to render a jupytext/jupyter notebook with papermill and pandoc.

	run_pandoc(in_file, out_file[, res_path, …])

	Convert to HTML using pandoc.

	build_index(html_files, output_file[, title])

	Create an index file referencing all specified html files.

reportsrender.render_rmd

	
reportsrender.render_rmd(input_file, output_file, params=None)

	Wrapper function to render an Rmarkdown document with
the R rmarkdown package and convert it to HTML using pandoc
and a custom template.

	Parameters

	
	input_file (str) – path to input (Rmd) file

	output_file (str) – path to output (html) file

	params (Optional[dict]) – Dictionary that will be passed to params arg of rmarkdown::render.
See https://bookdown.org/yihui/rmarkdown/parameterized-reports.html for more details.

reportsrender.render_papermill

	
reportsrender.render_papermill(input_file, output_file, params=None)

	Wrapper function to render a jupytext/jupyter notebook
with papermill and pandoc.

	Parameters

	
	input_file (str) – path to input file. Can be any format supported by jupytext.

	output_file (str) – path to output (html) file.

	params (Optional[dict]) – parameter dictionary that will be passed to papermill.
See https://papermill.readthedocs.io/en/latest/usage-parameterize.html for more details.

reportsrender.run_pandoc

	
reportsrender.run_pandoc(in_file, out_file, res_path=None, template_file=None, css_file=None)

	Convert to HTML using pandoc.

Will create a standalone, self-contained html based on the specified template.

	Parameters

	
	in_file (str) – path to input file. Can be any format supported by pandoc. The format will be inferred from
the file extension.

	out_file (str) – path to output (html) file.

	res_path (Optional[Collection[str]]) – List of pandoc resource paths (pandoc will look here for asset files). If no template_file is provided
the resource path of the default template will be appended.

	template_file (Optional[str]) – path to the pandoc template. Per default, the adaptive-bootstrap template
shipped with this package will be used.

	css_file (Optional[str]) – path to the css file used by pandoc. Per default, the css file from the adaptive-bootstrap template
shipped with this package will be used.

reportsrender.build_index

	
reportsrender.build_index(html_files, output_file, title='Index')

	Create an index file referencing all specified html files.

	Parameters

	
	html_files (List[str]) – List of documents to include in the index. The items will
appear in the same order as in the list.

	output_file (str) – Path to output file. Can either end with .md or .html.
In case of .html pandoc will be ran to convert the markdown
file to HTML.

	title (str) – H1-title of the page

 Python Module Index

 r

 		 	

 		
 r	

 	
 	
 reportsrender	

Index

 B
 | R

B

 	
 	build_index() (in module reportsrender)

R

 	
 	render_papermill() (in module reportsrender)

 	render_rmd() (in module reportsrender)

 	
 	reportsrender (module)

 	run_pandoc() (in module reportsrender)

 nav.xhtml

 Table of Contents

 		
 Welcome to reportsrender’s documentation!

 		
 Generate reproducible reports from Rmarkdown or jupyter notebooks

 		
 Getting started

 		
 Usage from command line

 		
 Installation

 		
 Conda (recommended):

 		
 Manual installation:

 		
 Get dependencies:

 		
 Install from pip:

 		
 Install from github:

 		
 Features

 		
 Execution engines

 		
 Supported notebook formats

 		
 Hiding cell inputs/outputs

 		
 Papermill engine:

 		
 Rmarkdown engine:

 		
 Parametrized notebooks

 		
 Papermill engine:

 		
 Rmarkdown engine:

 		
 Be compatible with both engines:

 		
 Sharing reports

 		
 Password protection

 		
 Combine notebooks into a pipeline

 		
 Usage as Python library

 		
 reportsrender.render_rmd

 		
 reportsrender.render_papermill

 		
 reportsrender.run_pandoc

 		
 reportsrender.build_index

_static/minus.png

_static/plus.png

_static/file.png

